skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Otkin, Jason A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. In recent years, extreme droughts in the United States have increased in frequency and severity, underlining a need to improve our understanding of vegetation resilience and adaptation. Flash droughts are extreme events marked by the rapid dry down of soils due to lack of precipitation, high temperatures, and dry air. These events are also associated with reduced preparation, response, and management time windows before and during drought, exacerbating their detrimental impacts on people and food systems. Improvements in actionable information for flash drought management are informed by atmospheric and land surface processes, including responses and feedbacks from vegetation. Phenologic state, or growth stage, is an important metric for modeling how vegetation modulates land–atmosphere interactions. Reduced stomatal conductance during drought leads to cascading effects on carbon and water fluxes. We investigate how uncertainty in vegetation phenology and stomatal regulation propagates through vegetation responses during drought and non-drought periods by coupling a land surface hydrology model to a predictive phenology model. We assess the role of vegetation in the partitioning of carbon, water, and energy fluxes during flash drought and carry out a comparison against drought and non-drought periods. We selected study sites in Kansas, USA, that were impacted by the flash drought of 2012 and that have AmeriFlux eddy covariance towers which provide ground observations to compare against model estimates. Results show that the compounding effects of reduced precipitation and high vapor pressure deficit (VPD) on vegetation distinguish flash drought from other drought and non-drought periods. High VPD during flash drought shuts down modeled stomatal conductance, resulting in rates of evapotranspiration (ET), gross primary productivity (GPP), and water use efficiency (WUE) that fall below those of average drought conditions. Model estimates of GPP and ET during flash drought decrease to rates similar to what is observed during the winter, indicating that plant function during drought periods is similar to that of dormant months. These results have implications for improving predictions of drought impacts on vegetation. 
    more » « less
  2. The influence of the Unified Noah and Noah-MP land surface models (LSMs) on the evolution of cumulus clouds reaching convective initiation (CI) is assessed using infrared brightness temperatures (BT) from GOES-16. Cloud properties from individual cloud objects are examined using output from high-resolution (500 m horizontal grid spacing) model simulations. Cloud objects are tracked over time and related to observed clouds reaching CI to examine differences in cloud extent, longevity, and growth rate. The results demonstrate that differences in assumed surface properties can lead to large discrepancies in the net surface radiative budget, particularly in the sensible and latent heating components where differences exceed 40 W m−2. These differences lead to changes in the local mesoscale circulation patterns that are more pronounced near the edges of forested and grassland boundaries where lower-level convergence is stronger. Higher sensible heating from the Noah-MP LSM produced growth of CI clouds earlier and with increased longevity, which was closer to the timing and growth observed from GOES-16. The increased cloud growth in the Noah-MP experiment results from stronger and deeper updrafts, which lofts more cloud water into the upper levels of the troposphere. The weaker updrafts from the Noah LSM experiment results in shallower convection after CI is detected due to slower growth rates. The differences in cloud properties and growth are directly related to the land surfaces they develop above and point to the importance of accurately representing land properties and radiative characteristics when simulating convection in numerical weather prediction models. 
    more » « less
  3. In this study, a polarimetric radar forward model operator was developed for the Weather Research and Forecasting (WRF) model that was based on a scattering algorithm using the T-matrix methodology. Three microphysics schemes—Thompson, Morrison 2-moment, and Milbrandt-Yau 2-moment—were supported in the operator. This radar forward operator used the microphysics, thermodynamic, and wind fields from WRF model forecasts to compute horizontal reflectivity, radial velocity, and polarimetric variables including differential reflectivity (ZDR) and specific differential phase (KDP) for S-band radar. A case study with severe convective storms was used to examine the accuracy of the radar operator. Output from the radar operator was compared to real radar observations from the Weather Surveillance Radar–1988 Doppler (WSR-88D) radar. The results showed that the radar forward operator generated realistic polarimetric signatures. The distribution of polarimetric variables agreed well with the hydrometer properties produced by different microphysics schemes. Similar to the observed polarimetric signatures, radar operator output showed ZDR and KDP columns from low-to-mid troposphere, reflecting the large amount of rain within strong updrafts. The Thompson scheme produced a better simulation for the hail storm with a ZDR hole to indicate the existence of graupel in the low troposphere. 
    more » « less
  4. In this study, a polarimetric radar forward model operator was developed for the Weather Research and Forecasting (WRF) model that was based on a scattering algorithm using the T-matrix methodology. Three microphysics schemes—Thompson, Morrison 2-moment, and Milbrandt-Yau 2-moment—were supported in the operator. This radar forward operator used the microphysics, thermodynamic, and wind fields from WRF model forecasts to compute horizontal reflectivity, radial velocity, and polarimetric variables including differential reflectivity (ZDR) and specific differential phase (KDP) for S-band radar. A case study with severe convective storms was used to examine the accuracy of the radar operator. Output from the radar operator was compared to real radar observations from the Weather Surveillance Radar–1988 Doppler (WSR-88D) radar. The results showed that the radar forward operator generated realistic polarimetric signatures. The distribution of polarimetric variables agreed well with the hydrometer properties produced by different microphysics schemes. Similar to the observed polarimetric signatures, radar operator output showed ZDR and KDP columns from low-to-mid troposphere, reflecting the large amount of rain within strong updrafts. The Thompson scheme produced a better simulation for the hail storm with a ZDR hole to indicate the existence of graupel in the low troposphere. 
    more » « less
  5. Flash droughts develop rapidly (∼1 month timescale) and produce significant ecological, agricultural, and socioeconomical impacts. Recent advances in our understanding of flash droughts have resulted in methods to identify and quantify flash drought events. However, few studies have been done to isolate the individual rapid intensification and drought components of flash drought, which could further determine their causes, evolution, and predictability. This study utilized the standardized evaporative stress ratio (SESR) to quantify individual components of flash drought from 1979 – 2019, using evapotranspiration (ET) and potential evapotranspiration (PET) data from the North American Regional Reanalysis (NARR) dataset. The temporal change in SESR was utilized to quantify the rapid intensification component of flash drought. The drought component was also determined using SESR and compared to the United States Drought Monitor. The results showed that SESR was able to represent the spatial coverage of drought well for regions east of the Rocky Mountains. Furthermore, the rapid intensification component agreed well with previous flash drought studies, with the overall climatology of rapid intensification events showing similar hotspots to the flash drought climatology east of the Rocky Mountains. The rapid intensification climatology suggested areas west of the Rocky Mountains experience rapid drying more often than east of the Rocky Mountains. 
    more » « less
  6. Abstract Probabilistic forecasts of changes in soil moisture and an Evaporative Stress Index (ESI) on sub-seasonal time scales over the contiguous U.S. are developed. The forecasts use the current land surface conditions and numerical weather prediction forecasts from the Sub-seasonal to Seasonal (S2S) Prediction Project. Changes in soil moisture are quite predictable 8-14 days in advance with 50% or more of the variance explained over the majority of the contiguous U.S.; however, changes in ESI are significantly less predictable. A simple red noise model of predictability shows that the spatial variations in forecast skill are primarily a result of variations in the autocorrelation, or persistence, of the predicted variable, especially for the ESI. The difference in overall skill between soil moisture and ESI, on the other hand, is due to the greater soil moisture predictability by the numerical model forecasts. As the forecast lead time increases from 8-14 days to 15-28 days, however, the autocorrelation dominates the soil moisture and ESI differences as well. An analysis of modelled transpiration, and bare soil and canopy water evaporation contributions to total evaporation, suggests improvements to the ESI forecasts can be achieved by estimating the relative contributions of these components to the initial ESI state. The importance of probabilistic forecasts for reproducing the correct probability of anomaly intensification is also shown. 
    more » « less
  7. null (Ed.)
    Abstract. The term “flash drought” is frequently invoked to describe droughts thatdevelop rapidly over a relatively short timescale. Despite extensive andgrowing research on flash drought processes, predictability, and trends,there is still no standard quantitative definition that encompasses allflash drought characteristics and pathways. Instead, diverse definitionshave been proposed, supporting wide-ranging studies of flash drought butcreating the potential for confusion as to what the term means and how tocharacterize it. Use of different definitions might also lead to differentconclusions regarding flash drought frequency, predictability, and trendsunder climate change. In this study, we compared five previously publisheddefinitions, a newly proposed definition, and an operational satellite-baseddrought monitoring product to clarify conceptual differences and toinvestigate the sensitivity of flash drought inventories and trends to thechoice of definition. Our analyses indicate that the newly introduced SoilMoisture Volatility Index definition effectively captures flash droughtonset in both humid and semi-arid regions. Analyses also showed thatestimates of flash drought frequency, spatial distribution, and seasonalityvary across the contiguous United States depending upon which definition is used.Definitions differ in their representation of some of the largest and mostwidely studied flash droughts of recent years. Trend analysis indicates thatdefinitions that include air temperature show significant increases in flashdroughts over the past 40 years, but few trends are evident fordefinitions based on other surface conditions or fluxes. These resultsindicate that “flash drought” is a composite term that includes severaltypes of events and that clarity in definition is critical when monitoring,forecasting, or projecting the drought phenomenon. 
    more » « less
  8. Abstract Flash drought is characterized by a period of rapid drought intensification with impacts on agriculture, water resources, ecosystems, and the human environment. Addressing these challenges requires a fundamental understanding of flash drought occurrence. This study identifies global hotspots for flash drought from 1980–2015 via anomalies in evaporative stress and the standardized evaporative stress ratio. Flash drought hotspots exist over Brazil, the Sahel, the Great Rift Valley, and India, with notable local hotspots over the central United States, southwestern Russia, and northeastern China. Six of the fifteen study regions experienced a statistically significant increase in flash drought during 1980–2015. In contrast, three study regions witnessed a significant decline in flash drought frequency. Finally, the results illustrate that multiple pathways of research are needed to further our understanding of the regional drivers of flash drought and the complex interactions between flash drought and socioeconomic impacts. 
    more » « less
  9. Flash droughts are characterized by a period of rapid intensification over sub-seasonal time scales that culminates in the rapid emergence of new or worsening drought impacts. This study presents a new flash drought intensity index (FDII) that accounts for both the unusually rapid rate of drought intensification and its resultant severity. The FDII framework advances our ability to characterize flash drought because it provides a more complete measure of flash drought intensity than existing classification methods that only consider the rate of intensification. The FDII is computed using two terms measuring the maximum rate of intensification (FD_INT) and average drought severity (DRO_SEV). A climatological analysis using soil moisture data from the Noah land surface model from 1979–2017 revealed large regional and interannual variability in the spatial extent and intensity of soil moisture flash drought across the US. Overall, DRO_SEV is slightly larger over the western and central US where droughts tend to last longer and FD_INT is ~75% larger across the eastern US where soil moisture variability is greater. Comparison of the FD_INT and DRO_SEV terms showed that they are strongly correlated (r = 0.82 to 0.90) at regional scales, which indicates that the subsequent drought severity is closely related to the magnitude of the rapid intensification preceding it. Analysis of the 2012 US flash drought showed that the FDII depiction of severe drought conditions aligned more closely with regions containing poor crop conditions and large yield losses than that captured by the intensification rate component (FD_INT) alone. 
    more » « less